Ricevo da Elisa il seguente problema:
In un piano riferito ad un sistema di assi cartesiani è assegnato il punto \(A(a,-a)\). Si scriva l’equazione della circonferenza \(\gamma\) di centro \(A\) che stacca sull’asse \(x\) un segmento di lunghezza \(2\sqrt{2}\). Si intersechi \(\gamma\) con l’iperbole \(\sigma\) di equazione \(xy=1\) e, osservando che l’equazione risolvente del sistema delle equazioni delle due curve è il quadrato di un trinomio, si deduca che al variare di \(a\) le curve \(\sigma\) e \(\gamma\) sono bitangenti tra loro in due punti \(B\) e \(C\). Si individuino le circonferenze \(\gamma_1\) e \(\gamma_2\) che si ottengono per quei valori di \(a\) per cui il segmento \(BC\) dista dal centro della circonferenza di cui è corda i \(3/10\) del segmento stesso. Trovare inoltre l’area della regione finita di piano delimitata dalle rispettive corde \(BC\) di \(\gamma_1\) e \(\gamma_2\) e dalla curva \(\sigma\).
↧